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We show, by using the Liapunov method, that the Lorenz model perturbed by 
Gaussian white noise is ergodic for any Rayleigh number. Our theory confirms 
two properties which have been found by numerical calculation. We also discuss 
the ergodicity of some other randomly perturbed dissipative systems, a one- 
dimensional laser, and a homopolar disk dynamo model of the geomagnetism. 
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1, INTRODUCTION 

Influence of external random noises on dynamical  systems which may 
become chaotic has been one of the major interests in nonequilibrium 
statistical mechanics. (1'2) Zippellus and L/icke (2) discussed the randomly 
perturbed Lorenz model: 

.~, = ay, + f t  x ( la )  

)~t = (R - 1)x, - (a  + 1)y, - xtz , + f f  ( lb )  

Zt ~- - -  bZ, + x t y  t "Jr" X 2 "~ f z  (1 C) 

Here x, y, and z are dimensionless variables and f /  (i = x, y , z )  is a 
Gaussian white noise with 

E[ = D6,j6(t - C), D > 0 (2) 

Parameters a = 10 and b = 8 /3  are held fixed, and R is the Rayleigh 
number.  They assumed (1) ergodicity of the system (1); their numerical 
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calculation shows (2) that the long time average of F, denoted by ( F )  

'fo T ( F )  = lira T - F ( x t ,  Yt ,  zt) dt (3) 

is independent of the starting point (x o, Y0, z0); and (3) that ( x )  = 0. 
The operator theory of ergodicity developed by Tropper (3) cannot be 

applied to the present case; he assumed that the drift part is given by a 
gradient of a certain potential function U, and that the first and second 
partial derivatives of grad U are bounded, both of which seem to be too 
restrictive in many dissipative systems. 

Our discussion is based on the Liapunov method (4'5) for diffusion 
processes. We can assert the unique existence of an invariant probability 
measure (stationary distribution) and the ergodicity of the process if we 
find a Liapunov function. Main theorems obtained by the method are 
summarized in Section 2. An intuitive argument is also given which shows 
that the ergodicity has the origin in the random noise. We will establish the 
above facts (1), (2), (3) for any Rayleigh number R in Section 3. In many 
systems simple Liapunov functions can be found. As such examples we 
discuss the laser model (6) and homopolar disk dynamo model of the 
geomagnetism. (v) An application to Lotka-Volterra model of population 
dynamics is found in Kesten and Ogura's paper. (8) 

2. LIAPUNOV METHOD 

Consider a diffusion process (Xt) in a d-dimensional Euclidean space 
R a, given by a stochastic differential equation (SDE) 

d 

dXt i~- bi(Xt)dt "Jr ~,, oij(Xt)dw i ( / =  1,2 . . . . .  d )  (4 )  
j = l  

where bi(x),oij(x ) ( i , j  = 1 , . . . ,  d)  are C2(R d) functions and wt i (i = 1, 
2 , . . . ,  d) is a d-dimensional Wiener process. Let [. [ denote the Euclidean 
norm. Let ~'N be the first exit time from a ball {x ~ Rd; Ix[ ~< N) .  Let 
]X0l ~< N. Then, for any given N, the SDE (4) has a unique solution (Xt) up 
to time ~U" It may happen that limu~cel- u < o9. In such a case the process 
is not conservative, 2 i.e., Px(Xt ~ R d ) <  1 for a finite t, where Px( ' )  
indicates the probability measure governing paths starting at X 0 = x. One 
such example is d = 1, bl(x  ) = x 2, air(x) = 1. (9) 

The following proposition gives a sufficient condition for the process 
to be conservative in terms of a Liapunov function V. 

2 In Ref. 4 the term regular is used instead of conservative. 
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Proposition .1 (10) Suppose there exist a nonnegative C2(R a) func- 
tion V and a positive constant c such that 

L~ V(x) <<_ cV(x), Vx e R d (5) 

lira inf V ( x ) =  ~ (6) 
N--->~ Ixl >~ N 

Then the process (Xt) is conservative, i.e., P , ( X  t ~ R a) = 1, Vt >> O, Vx 
E R d. Here L~ is a generator defined by 

l d 32 d 

i , j= 1 i= 1 Oxi (7) 
with 

d 

ao(x ) = ~ o,~(x)oj~(x) �9 (s) 
k = l  

In the following we assume that (asj) is nondegenerate: 
d 

~. aO.(x)~i~j> 0 if I~1 ~ o, for all x ~ R d (9) 
, , j=  1 

As known from Ref. 11, if the process is conservative and nondegenerate, 
the transition probability P ( t , x , A ) =  Px(Xt ~ A) has a density p ( t , x , y )  
with respect to the Lebesgue measure dy: P ( t , x , A ) =  fAp( t , x , y )dy .  The 
density p( t , x ,  y)  is a unique classical fundamental solution 3 to the back- 
ward and forward equations 

Op(t,x, y ) /o t  = Lxp(t,x, y) 
(10) 

Op(t, x, y ) /Ot  = Lffp(t, x, y)  

Here L* is the adjoint of Lx: 

d 32 d 3 

L* .  = G Ox, 3xj(a~j(x) " ) -  G -~x (hi(x) " ) (11) 
i , j = l  i=1 

The conservative diffusion process (Art) is called recurrent (13) if there 
exists a compact K such that 

Px(zn < ~ )  = 1, Vx  ~ R a (12) 

Recurrent process (Xt) is said to be positive recurrent (~4) if there exists a 
compact K such that 

Ed~K] < ~ ,  Vx ~ R d (13) 

3 As for the existence of fundamental  solutions under  the assumption of C2(R d) smoothness 
of bi(x) ,  og(x) and the nondegeneracy (9), see Ref. 12. 
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Here rK denotes the first hitting time of the set K: ~-K = inf(t/> 0; X t ~ K}, 
and E x denotes the expectation with respect to the probability measure Px. 
The importance of the positive recurrence is given by the following. 

Theorem 2. (~5),4 Suppose the process is positive recurrent. Then 
there exists a unique invariant probability measure/~ which has a density 
q(x) with respect to the Lebesgue measure dx. The density q(x) is a unique 
nonnegative solution with fq(x)dx  = 1 of the stationary Fokker-Planck 
equation 

L*q(x )=O (14) 

and is given by a limit of the transition probability density p: 

lira p(t ,x ,  y) = q(y) (15) 
t--, oo 

Furthermore the process has the ergodic properties, i.e., for any /t- 
integrable function F: 

( ;0 ; ) P~ lira T F(X t )d t=  F(y)tx(dy ) = 1  (16) 
T-->~ 

for a l lX o = x E Ra, �9 
The relation (16) shows that l imr ,~ T -  lfffF(X~)dt does not depend on 

the starting point X 0. 
Existence of a Liapunov function V implies the positive recurrence. 

Theorem 3. (16) Let (Xt) be conservative. Suppose there exists a 
C2(R d) nonnnegative function V such that 

lim sup L~V(x) < 0  (17) 
u - ~  Ixt > N 

Then the process (Xt) is positive recurrent. �9 

We sometimes need to apply the relation (16) to moment functions, 
i.e., F(x) = [xl". The following theorem gives a sufficient condition for both 
positive recurrence and t~-integrability of moment functions 

Theorem 4. (5) Suppose there exist a C2(R d) nonnegative function V 
and positive constants c 1, c 2, n and constants cr such that 

- a + ealxl" < V(x) (18a) 

L~V(x) <~ - c 2 V ( x  ) +/3 (lgb) 

Then the process is positive recurrent and flxl"l~(dx) < oo. �9 

4 Some facts used in proofs of L e m m a s  9.4 and  9.5 of Ref. 15 on fundamen ta l  solut ions are 

given in Ref. 12. 
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Note that the condition (18) is a stronger version of (5), (6), and (17); 
in fact inequality (5) is satisfied since 

L (V(x) + BIc2) = LxV(x)  < - c 2 V ( x )  + • < c2(V(x) + BIc2) 

and (6) and (17) immediately follow from (18). 
Models in the present paper will be solved by using Theorem 4. It is 

worthwhile to mention that to find Liapunov functions with (18) for 
diffusion processes is even easier than to find those for dynamical systems. 
(See Section 5.) 

We also remark (5) that the existence of a Liapunov function with (18) 
still implies the existence of an invariant probability measure, though may 
not be unique, even when the diffusion coefficients (ao.) become degenerate. 

In the above theorems ergodicity primarily comes from the random 
noise, not from the drift. Existence of the Liapunov function guarantees 
that the attractive drift is strong enough to make the sample point in the 
phase space R d hit a finite domain G around the origin. Being driven by 
the random noise, the sample point leaves G, and then returns to G; a 
trajectory drawn by the sample point is made of infinite number of 
excursions which are independent of each other by the Markov property. 
The nondegeneracy assumption (9), on the other hand, implies that the 
random noise remains effective in all the directions at every point in R ~, so 
that the trajectory will be complicated enough to smear out a d-dimensional 
neighborhood of each point on the trajectory. Hence the excursions will 
eventually smear out R d itself, which means the ergodicity. 

3. L O R E N Z  M O D E L  

Equation (1) is expressed in a form of an SDE as 

dX, = aY, + 

d Y , =  { ( R -  1 ) X t - ( a +  1 ) Y , - X ~ Z t ) d t + r  (19) 

dZ  t = ( - b Z  t + XrY , + X~2)dt +~-Ddw/ 

where (wt x, w y, wT) is a three-dimensional Wiener process. Generator Lx,y,z 
takes the form 

Lx,y,z = ayO/Ox + {(R - 1)x - (a + 1)y - xz)O/Oy + ( - b z  + xy + x 2) 

X ~/Oz + �89 2 + 02/Oy 2 + O2/Oz 2) (20) 

Consider a function V defined by 

V ( x , y , z ) = ( a + 2 ) x 2 / a + ( x + y ) 2 + ( z - a - R ) :  (21) 
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It is easy to see 

V(x , y , z )  >t a(x  2 + y 2  + z 2) _ a(a + R)2/(1  - a) 

where 

(22) 

Now we see 

Lx,y,zV(x,y,z ) = - 2 ( a  + 1)x z -  2y 2 -  b(z - a - R)  2 

- b z  2 + D(4 + 21a) + b(a + R) 2 

< - �89 A 1){(2a + 2)x2/a + 2xy +y2}  

- b ( z  - a -  R)2+  D(4 + Z/a) + b(a + R)  2 

<. - ( �89  A b A �89 y,z)  + 0 ( 4  + 2/a)  + b(a + R)  2 

(23) 
where e I A c z = min(cj,c2). Hence the inequality (18) holds with V = V(x, 
y,z). By Theorem 4 we see that the process is ergodic with respect to a 
unique invariant probability measure/x whose density q(x, y, z) is given by 
a unique nonnegative solution of the stationary Fokker-Planck equation 

L*y,zq(x, y ,z)  = 0 (24) 

and that moments up to the second order are finite: 

f (x 2 + y2 + z2)q(x, y , z ) a x a y a z <  ~ .  (25) 

In (24) L*y,z is the adjoint operator of Lx,y,z (20). 
Clearly Eq. (24) is invariant through the transformation x - - > -  x, 

y--> - y ,  z--> z. Hence by the uniqueness of q, we have q(x, y, z) = q ( - x ,  
- y ,  z), which together with (25) shows 

f xq(x, y,z)dxdycl~= f -xq(-x,-y,z)dxdydz 

= - f x q ( x , y , z ) d x d y d z  

i.e., ( x )  = 0, proving the fact (3). Similarly we obtain ( y )  = 0. 
In numerical calculation the facts (2) and (3) are confirmed only for 

convection regime 0 < R < R r = 24.74. The arguments given in this sec- 
tion show they hold for all the Rayleigh number R > 0 and a > 0, b > 0. 
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4. ONE-DIMENSIONAL LASER 

The model is given by(6}: d =  1, bl (x  ) = 7x - x 3, OII(X ) = 1 with a 
constant ~,. The generator L x takes the form 

Lx ~-- ( r x  - x 3 ) d / d x  3r l d 2 / d x 2  

A function V ( x ) =  x 2 satisfies the assumption of Theorem 4; hence the 
process is ergodic and the density q(x)  of the unique invariant prob- 
ability measure is given by L * q ( x ) =  0, the solution of which is q ( x ) =  
JJ~" exp(yx 2 - �89 X 4) with a normalization constant jU .  

5. HOMOPOLAR DISK DYNAMO MODEL 

The homopolar disk dynamo model was introduced by Bullard. (7) We 
here discuss a slightly modified version due to Allan (17) which is given by 
an ordinary differential equation 

2 t = - i z x t  + xtyt 

))t = - v y t  + 1 - x 2 ( 2 6 )  

where /~,v are positive constants with pw < 1. Set 2t= (1 - / zv)  1/2. The 
variable x corresponds to electric current, while y to the angular velocity of 
the disk. Stationary points of Eq. (26) are (X, /x), ( - 2t, /,), (0, l /v) ,  which 
cover all the possible ~0-1imit sets of (26). To see this, introduce a function 
Vl(X, y )  for x > 0 by 

V,(x ,  y )  = (x  z - X2)/2 - X21og(x/?t) + (y  - / , ) 2 / 2  (27) 

Clearly Vl(X, y )  > 0 and = 0 iff x = ), and y = / , .  Using (26), we obtain 

a v l ( x , ,  y , ) / a t  = - , , ( y ,  - t,) 2 (28) 
hence d V l / d t  = 0 iff y = / t .  By a theorem given in La SaUe-Lefshetz' 
book (18), ( x t , y t )  with X o > 0  approaches to 0 t,/1) as t ~ o o .  Similarly 
(xt, Yt) with x 0 < 0  approaches to (-)t,~t0. If x 0 = 0  then x t = O  and 
y t ~ l / v  as t--> m. 

The above discussion also shows that the model (26) does not exhibit 
the reversal of the geomagnetism; xoX , does not change sign. On the other 
hand, randomly perturbed homopolar disk dynamo model 

dX ,  = - t.Or dt  + X ,  V, d t  + o dw t 
(29) 

dY, = - v r t d t  + (1 - X,2)d t  + odw[  

does exhibit the reversal. (19) Its ergodicity is proved by using Theorem 4 
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with  a L i a p u n o v  f u n c t i o n  

since 

H e r e  

V ( x , y )  = x 2 + y 2  

Lx,y V ( x ,  y )  = - 2/*x 2 - 2vy 2 + 2y + 20 .2 

.< - ( ~  A .)(~2 +y~)  + 1/y + 20. 2 

Lx,y = ( - ~ x  + x y ) ~ / ~  + ( - . y  + 1 - x 2) a / ~ y  

+ ko2(~/~x ~ + ~2/~;2) 
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